1.在△ABC中,内角A,B,C对边分别是a,b,c,已知c=2,C=π/3.
(1)若△ABC的面积等于√3,求a,b;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.
(1)∵c=2,C=π/3.S△ABC=1/2*absinC=√3 ∴ab=4
根据余弦定理:c²=a²+b²-2abcosC ∴a²+b²-ab=4
∴a²+b²=4+ab=8,(a-b)²=a²+b²-2ab=4-4=0
∴a=b=2
(2) ∵ sinC+sin(B-A)=2sin2A
∴sin(A+B)+sin(B-A)=2sin2A
∴sinAcosB+cosAsinB+sinBcosA-cosBsinA=4sinAcosA
∴2sinBcosA=4sinAcosA
∴cosA(sinB-2sinA)=0
∴cosA=0或sinB=2sinA
若 cosA=0得,A=π/2 ,B=A-C=π/6,b=√3,
SΔABC=1/2bc=√3
若sinB=2sinA则b=2a,
根据余弦定理:c²=a²+b²-2abcosC
∴a²+4a²-2a²=4 ∴a=2√3/3 ,b=4√3/3
∴SΔABC=1/2absinC=4/3*√3/2=2√3/3
∴△ABC的面积√3,或2√3/3 .
2.在△ABC中,已知2sinBcosA=sin(A+C).
(1)求角A;(2)若BC=2,△ABC的面积是√3,求AB.
(1)∵ 2sinBcosA=sin(A+C).sin(A+C)=sinB>0
∴ cosA=1/2,∵0