如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A'重

1个回答

  • 解题思路:先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理即可求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,再根据平角的性质即可求出答案.

    ∵△A′DE是△ADE翻折变换而成,

    ∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=70°,

    ∴∠AED+∠ADE=∠A′ED+∠A′DE=180°-70°=110°,

    ∴∠1+∠2=360°-2×110°=140°.

    故答案为:140°.

    点评:

    本题考点: 翻折变换(折叠问题);三角形内角和定理.

    考点点评: 本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.