填空:已知,(如图)在△ABC中,BD为∠ABC的平分线,AB=BC,点P在BF上,PM⊥AD于M,PN⊥CD于N,求证

1个回答

  • 角平分线的定义,∠ABD=∠CBD,SAS,∠ADB=∠CDB,全等三角形的对应角相等,PM⊥AD PN⊥CD,PM=PN。

    根据角平分线的定义可得出∠ABD=∠CBD,则可证明△ABD≌△CBD,从而得出∠ADB=∠CDB,再由PM⊥AD,PN⊥CD,得出PM=PN.

    证明:∵BD为∠ABC的平分线,

    ∴∠ABD=∠CBD (角平分线的定义)

    在△ABD和△CBD中,

    ∴△ABD≌△CBD SAS

    ∴∠ADB=∠CDB (全等三角形的对应角相等)

    又∵PM⊥ADPN⊥CD(已知),

    ∴PM=PN.

    故答案为:角平分线的定义,∠ABD=∠CBD,SAS,∠ADB=∠CDB,PM⊥ADPN⊥CD,PM=PN.

    考查了全等三角形的判定和性质、角平分线的定义以及角平分线的性质,是基础知识要熟练掌握