p^2+q^2-p^2q^2-1=0
(p^2-1)(q^2-1)=0
∴ q^2=1或者p^2=1
q^2=1则方程x^2+px+1/4=0 有相等实数根-1/2
p^2=1则方程 x^2+qx+1/4=0有相等实数根-1/2
所以 两个方程至少有一个有相等实数根.
p^2+q^2-p^2q^2-1=0
(p^2-1)(q^2-1)=0
∴ q^2=1或者p^2=1
q^2=1则方程x^2+px+1/4=0 有相等实数根-1/2
p^2=1则方程 x^2+qx+1/4=0有相等实数根-1/2
所以 两个方程至少有一个有相等实数根.