(1)∵在△ABC中已知sin(π/2+A)=2√5/5
∴sinA>0,cosA=2√5/5
∴sinA=√(1-cos²A)=√(1-4/5)=√5/5
∴tanA=sinA/cosA=2
故tan(2A)=2tanA/(1-tan²A)=2*2/(1-2²)=-4/3;
(2)∵cosB=3√10/10
∴sinB=√(1-cos²B)=√10/10
∴sin(A+B)=sinAcosB+cosAsinB=√2/2
∵AB=10
∴根据正弦定理知,BC/sinA=AB/sinC
==>BC/sinA=AB/sin(π-A-B)
==>BC/sinA=AB/sin(A+B)
==>BC=AB*sinA/sin(A+B)=10*(√5/5)/(√2/2)=2√10
∵AB边上的高h=BC*sinB=2√10*(√10/10)=2
∴△ABC面积=h*AB/2=2*10/2=10.