∫√(2-x²) dx 积分区间0 √2

3个回答

  • ∫(2-x²)dx

    =[2x-(1/3)x³]|

    =(2√2-(1/3)*2√2]-(0-0)

    =2√2-(2/3)√2

    =(4/3)√2

    ∫1/[√(1-x)-1]dx

    令√(1-x)=t ==> 1-x=t² ==> x=1-t² ==> dx=-2tdt

    且,x=3/4时,t=1/2;x=1时,t=0

    原式=∫[-2t/(t-1)]dt

    =2∫[t/(t-1)]dt

    =2∫[(t-1)+1]/(t-1)dt

    =2∫[1+1/(t-1)]dt

    =2t|+2∫[1/(t-1)]dt

    =2[(1/2)-0]+2ln|t-1||

    =1+2[ln(1/2)-0]

    =1-2ln2

    ∫1/[e^x+e^(-x)]dx

    =∫e^x/[(e^x)²+1]dx

    =∫[1/(e^x)²+1]d(e^x)

    =arctan(e^x)|

    =limarctana-arctan1

    =(π/2)-(π/4)

    =π/4