令x1=x2=0,则有f(0)=f(0)+f(0)+1,得到f(0)=-1
令g(x)=f(x)+1,则有g(x)+g(-x)=f(x)+1+f(-x)+1=[f(x)+f(-x)+1]+1=f(x-x)+1=f(0)+1=0
故有g(x)=-g(-x),即有f(x)+1是奇函数,选择C
令x1=x2=0,则有f(0)=f(0)+f(0)+1,得到f(0)=-1
令g(x)=f(x)+1,则有g(x)+g(-x)=f(x)+1+f(-x)+1=[f(x)+f(-x)+1]+1=f(x-x)+1=f(0)+1=0
故有g(x)=-g(-x),即有f(x)+1是奇函数,选择C