cosB/cosC=-b/(2a+c)=-sinB/(2sinA+sinC),
∴2sinAcosB+cosBsinC=-sinBcosC,
∴2sinAcosB+sin(B+C)=0,
sin(B+C)=sinA≠0,
∴cosB=-1/2,B=120°,A+C=60°,|A-C|∈[0°,60°)
∴a+c=b(sinA+sinC)/sinB
=2√2sin[(A+C)/2]cos[(A-C)/2]/(√3/2)
=(2√6/3)cos[(A-C)/2]
∈(√2,2√6/3].
cosB/cosC=-b/(2a+c)=-sinB/(2sinA+sinC),
∴2sinAcosB+cosBsinC=-sinBcosC,
∴2sinAcosB+sin(B+C)=0,
sin(B+C)=sinA≠0,
∴cosB=-1/2,B=120°,A+C=60°,|A-C|∈[0°,60°)
∴a+c=b(sinA+sinC)/sinB
=2√2sin[(A+C)/2]cos[(A-C)/2]/(√3/2)
=(2√6/3)cos[(A-C)/2]
∈(√2,2√6/3].