证明:
在AB上截取AF=AC;AE=AD;连接DE;DF
∵AC=BC‘
∴∠BAC=∠CAB=180°-∠C
∵∠C=100°;
∴∴∠BAC=∠ABC=40°;
∵AD平分∠CAB;
∴∠DAB=20°;
∵AD=AD;
∴∠ADE=∠AED=`1/2(180-20)=80°;
∵∠AED=∠DEC+∠ABC;
∴∠DEB=∠AED-∠ABC=80-40=40°=∠ABC;
∴DE=EB;
∴AB=AE+EB=AD+DE;
∵AF=AC;
AC平分∠CAB;
所以△ACD全等于△AFD;
∴CD=FD;
∠AFD=∠C=100°
∴∠DFB=180-100=80=∠AED;
∴FD=DE;
∴CD=DE;
∴AB=AD+CD;