已知、在△ABC中、∠C=100°.AC=BC、AD平分∠CAB.求证AD+CD=AB

2个回答

  • 证明:

    在AB上截取AF=AC;AE=AD;连接DE;DF

    ∵AC=BC‘

    ∴∠BAC=∠CAB=180°-∠C

    ∵∠C=100°;

    ∴∴∠BAC=∠ABC=40°;

    ∵AD平分∠CAB;

    ∴∠DAB=20°;

    ∵AD=AD;

    ∴∠ADE=∠AED=`1/2(180-20)=80°;

    ∵∠AED=∠DEC+∠ABC;

    ∴∠DEB=∠AED-∠ABC=80-40=40°=∠ABC;

    ∴DE=EB;

    ∴AB=AE+EB=AD+DE;

    ∵AF=AC;

    AC平分∠CAB;

    所以△ACD全等于△AFD;

    ∴CD=FD;

    ∠AFD=∠C=100°

    ∴∠DFB=180-100=80=∠AED;

    ∴FD=DE;

    ∴CD=DE;

    ∴AB=AD+CD;