∫1/[x(x2-1)]dx等于多少

1个回答

  • 1/[x(x2-1)]

    =1/x(x+1)(x-1)

    设a/x+b/(x+1)+c/(x-1)

    =[a(x2-1)+bx(x-1)+cx(x+1)]/x(x+1)(x-1)

    =(ax2-a+bx2-bx+cx2+cx)/x(x+1)(x-1)

    =[(a+b+c)x2+(c-b)x-a]/x(x+1)(x-1) =1/x(x+1)(x-1)

    则有

    a+b+c=0

    c-b=0

    -a=1

    解得

    a=-1 b=1/2 c=1/2

    ∴1/[x(x2-1)]=-1/x +1/2(x+1)+1/2(x-1)

    ∴∫1/[x(x2-1)]dx

    =-∫dx/x +∫dx/2(x+1)+∫dx/2(x-1)

    =-lnx +1/2ln(x+1)+1/2ln(x-1) +C

    =ln√[(x+1)(x-1)]-lnx+c

    =|ln[√(x2-1)]/x|+c