1.(1) 解R={,,,},
R的定义域{1,2,3,4}
R的值域{2,3,4,5}
(2) 解R^-1={,,,},
R^-1的定义域{2,3,4,5}
R^-1的值域{1,2,3,4}
(3) 解不是自反,对称和传递的,但是是反对称的,不是一个偏序.
2.解R是{1,2,3,4}上的等价关系,因为R是自反,对称和传递的.
3.(1)解A1=
1 0
1 1
0 1
(2)解A2=
1 1 0
1 0 1
(3)解A1A2=
1 1 0
2 1 1
1 0 1
(4) 解R1 ◦ R2的关系矩阵(原R2 ◦ R1是错的)=
1 1 0
1 1 1
1 0 1
4.解用欧几里得辗转相除
(1)825=315×2+195
315=195×1+120
195=120×1+75
120=75×1+45
75=45×1+30
45=30×1+15
30=15×2
故315,825最大公因子15.
(2)993=331×2
故331,993最大公因子331.