用垂直x轴的平面去截这个旋转体,可以得到一个环形的截面,这个环形的面积是:
S=π((2a)²-(2a-y)²)
所以体积微分
dV=Sdx=π(4a²-(2a-a(1-cost))²)d(a(t-sint))
=πa²(3-2cost-cos²t)a(1-cost)dt
积分区间为[0,2π]
所以V=∫[0,2π]πa²(3-2cost-cos²t)a(1-cost)dt=7π²a³
用垂直x轴的平面去截这个旋转体,可以得到一个环形的截面,这个环形的面积是:
S=π((2a)²-(2a-y)²)
所以体积微分
dV=Sdx=π(4a²-(2a-a(1-cost))²)d(a(t-sint))
=πa²(3-2cost-cos²t)a(1-cost)dt
积分区间为[0,2π]
所以V=∫[0,2π]πa²(3-2cost-cos²t)a(1-cost)dt=7π²a³