原始=1^1+2^2+3^2+3^2+4^2.+11^2+(2+3+4+...+11)-1=11*12*23/6+(1+2+3+...+11)-2=11*12*23/6+(1+11)*11/2-2=506+66-2=570
PS:1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6
很详细了吧,给个最佳哈
补充,就是把2*3变成2*(2+1)=2^2+2,3*4=3*(3+1)=3^2+3,依次下去
原始=1^1+2^2+3^2+3^2+4^2.+11^2+(2+3+4+...+11)-1=11*12*23/6+(1+2+3+...+11)-2=11*12*23/6+(1+11)*11/2-2=506+66-2=570
PS:1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6
很详细了吧,给个最佳哈
补充,就是把2*3变成2*(2+1)=2^2+2,3*4=3*(3+1)=3^2+3,依次下去