(1):n=1时,左边=1 右边 =1 满足
假设 n=k 时 an≥2^n-1
则 n=k+1时,a(n+1)≥f'(an+1)=(an+1)²-1=an²+2an
而x²+2x 在x≥-1 时候递增
则an²+2an≥(2^n-1)²+2(2^n-1)=(2^2k)-1≥(2^k+1 -1)
从而得证
(2)为等比求和易得小于1
(1):n=1时,左边=1 右边 =1 满足
假设 n=k 时 an≥2^n-1
则 n=k+1时,a(n+1)≥f'(an+1)=(an+1)²-1=an²+2an
而x²+2x 在x≥-1 时候递增
则an²+2an≥(2^n-1)²+2(2^n-1)=(2^2k)-1≥(2^k+1 -1)
从而得证
(2)为等比求和易得小于1