暂时post四种方法啦方法:凑微分法快速计法∫ (3 - 2 x)? dx
= 1 / 2 * ∫ (3 - 2 x)? d(2 x)
= - 1 / 2 * ∫ (3 - 2 x)? d(- 2 x)
= - 1 / 2 * ∫ (3 - 2 x)? d(3 - 2 x)
= - 1 / 2 * (3 - 2 x)^4 / 4 + C
= [- (3 - 2 x)^4] / 8 + C方法二:代换法∫ (3 - 2 x)? dx
令 u = 3 - 2 x
du = - 2 dx
dx = - du / 2
原式 = - 1 / 2 ∫ u? du
= - 1 / 2 * u^4 / 4 + C
= [- (3 - 2 x)^4] / 8 + C方法三:二项式展开法∫ (3 - 2 x)? dx
= ∫ [3? - 3 (3?) (2 x) + 3 (3) (2 x)? - (2 x)?] dx
= ∫ (27 - 54 x + 36 x? - 8 x?) dx
= 27 x - 54 x? / 2 + 36 x? / 3 - 8 x^4 / 4 + C
= 27 x - 27 x? + 12 x? - 2 x^4 + C加(- 81 / 8)项因式分解继而得= [- (3 - 2 x)^4] / 8 + C'方法四:三角函数代换法∫ (3 - 2 x)? dx
令 √(2 x) = √3 sinθ
sinθ = √(2 x) / √3用cosθ = √(1 - sin?θ)公式
cosθ = √(3 - 2 x) / √3cosθ答案要用
x = 3 sin?θ / 2
dx = 3 sinθ cosθ dθ
(3 - 2 x)?=(3 - 2 * 3 sin?θ / 2)?
=(3 cos? θ)? = 27 [cosθ]^6
原式 = ∫ 27 [cosθ]^6 * 3 sinθ cosθ dθ
= - 81 ∫ [cosθ]^7 d(cosθ)
= - 81 * [cosθ]^8 / 8 + C
= - 81 / 8 * [√(3 - 2 x) / √3]^8 + C
= - 81 / 8 * (3 - 2 x)^(1 / 2 * 8) / 3^(1 / 2 * 8) + C
= [- (3 - 2 x)^4] / 8 + C