证明:(1)∵BM平分∠ABC,∠BAC=90°,MT⊥BC,
∴AM=MT.
又∵AM=AK,
∴AK=MT.
(2)∵BM平分∠ABC,
∴∠ABM=∠CBM.
∵AM=AN,
∴∠AMN=∠ANM.
又∵∠ANM=∠BND,
∴∠AMN=∠BND.
∵∠BAC=90°,
∴∠ABM+∠AMB=90°.
∴∠CBM+∠BND=90°.
∴∠BDN=90°.
∴AD⊥BC.
(3)连接PN、KM
∵BNM和BPK为⊙A的割线,
∴BN•BM=BP•BK.
∴
BN
BP =
BK
BM .
∵AK=BD,AK=MT,
∴BD=MT.
∵AD⊥BC,MT⊥BC,
∴∠ADB=∠MTC=90°.
∴∠C+∠CMT=90°.
∵∠BAC=90°,
∴∠C+∠ABC=90°.
∴∠ABC=∠CMT.
在△ABD和△CMT中,
∠ABD=∠CMT
BD=MT
∠ADB=∠CTM ,
∴△ABD≌△CMT.
∴AB=MC.
∵AK=AM,
∴AB+AK=MC+AM.
即BK=AC.
∴
BN
BP =
AC
BM .
1年前
9