2.
an=a(n-1)+a(n-2)
设an-xa(n-1)=y[a(n-1)-xa(n-2)]
an=(x+y)a(n-1)-xya(n-2)
x+y=1
xy=-1
x=1/2+√5/2,y=1/2-√5/2或x=1/2-√5/2,y=1/2+√5/2,
an-(1/2+√5/2)a(n-1)=(1/2-√5/2)[a(n-1)-(1/2+√5/2)a(n-2)]
或an-(1/2-√5/2)a(n-1)=(1/2+√5/2)[a(n-1)-(1/2-√5/2)a(n-2)],
设bn=a(n+1)-(1/2+√5/2)an或bn=a(n+1)-(1/2-√5/2)an,
b1=a2-(1/2+√5/2)a1或b1=a2-(1/2-√5/2)a1,
b1=1-(1/2+√5/2)或b1=1-(1/2-√5/2),
bn=b1*(1/2-√5/2)^(n-1)=[1-(1/2+√5/2)]*(1/2-√5/2)^(n-1)
或bn=b1*(1/2+√5/2)^(n-1)=[1-(1/2-√5/2)]*(1/2+√5/2)^(n-1)
a(n+1)-(1/2+√5/2)an=[1-(1/2+√5/2)]*(1/2-√5/2)^(n-1)
=(1/2-√5/2)*(1/2-√5/2)^(n-1)
=(1/2-√5/2)^n
或
a(n+1)-(1/2-√5/2)an=[1-(1/2-√5/2)]*(1/2+√5/2)^(n-1)
=(1/2+√5/2)*(1/2+√5/2)^(n-1)
=(1/2+√5/2)^n
an-(1/2+√5/2)a(n-1)=(1/2-√5/2)^(n-1)
或
an-(1/2-√5/2)a(n-1)=(1/2+√5/2)^(n-1)
先算第1个,
an-(1/2+√5/2)^2*a(n-2)
=(1/2-√5/2)^(n-1)+(1/2+√5/2)*(1/2-√5/2)^(n-2)
an-(1/2+√5/2)^4*a(n-4)
=(1/2-√5/2)^(n-1)+(1/2+√5/2)(1/2-√5/2)^(n-2)+(1/2+√5/2)^2*((1/2-√5/2)^(n-3)+(1/2+√5/2)^3*(1/2-√5/2)^(n-4)
……
an-(1/2+√5/2)^(n-1)*a1
=(1/2-√5/2)^(n-1)+(1/2+√5/2)(1/2-√5/2)^(n-2)+(1/2+√5/2)^2*((1/2-√5/2)^(n-3)+(1/2+√5/2)^3*(1/2-√5/2)^(n-4)+……+(1/2+√5/2)^(n-2)*(1/2-√5/2)
所以an=(1/2-√5/2)^(n-1)+(1/2+√5/2)(1/2-√5/2)^(n-2)+(1/2+√5/2)^2*((1/2-√5/2)^(n-3)+(1/2+√5/2)^3*(1/2-√5/2)^(n-4)+……+(1/2+√5/2)^(n-2)*(1/2-√5/2)+(1/2+√5/2)^(n-1)
右边为等比数列之和,数列首项为(1/2-√5/2)^(n-1),公比为(1/2+√5/2)/(1/2-√5/2)=-(1/2+√5/2)^2
an=[(1/2-√5/2)^(n-1)]*{[-(1/2+√5/2)^2]^(n-1)-1}/{[-(1/2+√5/2)^2]-1}
=[(1/2-√5/2)^(n-1)]*{[-(5/2+√5/2)]^(n-1)-1}/[-(5/2+√5/2)]
=[(1/2-√5/2)^n]*{[-(5/2+√5/2)]^(n-1)-1}/√5
同理第2个为
an=[(1/2+√5/2)^n]*{[-(5/2-√5/2)]^(n-1)-1}/√5