多元回归分析logistics因变量的取值范围可以是连续变量吗?

1个回答

  • 多元回归分析中,要求所有变量须为等距尺度 (或译区间尺度,interval level of measurement),或者是“0/1”(自变量).

    如果变量的值仅属名目尺度(nominal),亦即“1,2,3,4分别代表不同选项意义”这样的变量,是不可以放进去做回归分析的.严格上说,就连“低,中,高”这样的顺序尺度(ordinal)变量也不能回归分析.

    以你目前的情况,因变量是连续型的(亦即等距(区间)尺度),而自变量是“1,2,3,4分别代表不同选项意义”这样的名目尺度变量,则可以把自变量化为虚拟变项(Dummy variables),亦即“0/1”化,以便进行回归分析.

    以你的例子,“1,2,3,4分别代表不同选项意义”这样的自变量,设3个虚拟变项就够.

    当选答1,VAR_D1的值定为1,选答其余的(2,3,4),VAR_D1的值定为0;

    当选答2,VAR_D2的值定为1,选答其余的(1,3,4),VAR_D2的值定为0;

    当选答3,VAR_D3的值定为1,选答其余的(1,2,4),VAR_D3的值定为0.

    亦即:

    若选答1,VAR_D1=1,VAR_D2=0,VAR_D3=0;

    若选答2,VAR_D1=0,VAR_D2=1,VAR_D3=0;

    若选答3,VAR_D1=0,VAR_D2=0,VAR_D3=1;

    若选答4,VAR_D1=0,VAR_D2=0,VAR_D3=0.

    (不要搞出个VAR_D4放进回归方程,不然的话会出现共线性问题)

    此外,若因变量未达等距尺度的要求(亦即不是连续型的),

    只属“低,中,高”这样的顺序尺度变量,你有两种处理方法:

    (1)假设它是等距的,照样做回归分析;

    (2)用对数线性模型的Logit Loglinear Analysis处理 (较严紧的做法)

    至於你在书上看到的logistics回归方法,不适合你用啦.它是针对因变量为“0/1”二分的.当然,你也可以把你的资料降级,区分为两组,放进去做logistics回归,但这会丧失了许多资讯,太浪费了.