(Ⅰ)∵A,B,C为△ABC的内角,且cosA=2√5/5.cosB=3√10/10,
∴sinA=√1-(osA)^2=√5/5,sinB=√1-(osB)^2=√10/10
∴cos(A+B)=cosAcosB-sinAsinB=√2/2
(Ⅱ)由(I)知,A+B=45°
∴C=135°,即sinC=√2/2
a=√10
∴由正弦定理a/sinA=b/sinB,b=asinB/sinA=√5
∴S△ABC=1/2absinC=1/2√10*√5=5/2
(Ⅰ)∵A,B,C为△ABC的内角,且cosA=2√5/5.cosB=3√10/10,
∴sinA=√1-(osA)^2=√5/5,sinB=√1-(osB)^2=√10/10
∴cos(A+B)=cosAcosB-sinAsinB=√2/2
(Ⅱ)由(I)知,A+B=45°
∴C=135°,即sinC=√2/2
a=√10
∴由正弦定理a/sinA=b/sinB,b=asinB/sinA=√5
∴S△ABC=1/2absinC=1/2√10*√5=5/2