要题型和答案.常见的.

1个回答

  • 初中数学规律题解题基本方法

    初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:

    一、基本方法——看增幅

    (一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.

    例:4、10、16、22、28……,求第n位数.

    分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2

    (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.

    基本思路是:1、求出数列的第n-1位到第n位的增幅;

    2、求出第1位到第第n位的总增幅;

    3、数列的第1位数加上总增幅即是第n位数.

    举例说明:2、5、10、17……,求第n位数.

    分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:

    〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1

    所以,第n位数是:2+ n2-1= n2+1

    此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.

    (三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.

    (三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.

    二、基本技巧

    (一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.

    例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是 .

    解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:

    给出的数:0,3,8,15,24,…….

    序列号:1,2,3,4,5,…….

    容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.

    (二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.

    例如:1,9,25,49,(),(),的第n为(2n-1)2

    (三)看例题:

    A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1

    B:2、4、8、16.增幅是2、4、8...答案与2的乘方有关 即:2n

    (四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.

    例:2、5、10、17、26……,同时减去2后得到新数列:

    0、3、8、15、24……,

    序列号:1、2、3、4、5

    分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1

    (五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.

    例 :4,16,36,64,,144,196,… (第一百个数)

    同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.

    (六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.

    (七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.

    三、基本步骤

    1、 先看增幅是否相等,如相等,用基本方法(一)解题.

    2、 如不相等,综合运用技巧(一)、(二)、(三)找规律

    3、 如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律

    4、 最后,如增幅以同等幅度增加,则用用基本方法(二)解题

    四、练习题

    例1:一道初中数学找规律题

    0,3,8,15,24,••••••

    2,5,10,17,26,•••••

    0,6,16,30,48••••••

    (1)第一组有什么规律?

    (2)第二、三组分别跟第一组有什么关系?

    (3)取每组的第7个数,求这三个数的和?

    2、观察下面两行数

    2,4,8,16,32,64,...(1)

    5,7,11,19,35,67...(2)

    根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)

    3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠子,前2002个中有几个是黑的?

    4、 3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……

    用含有N的代数式表示规律

    写出两个连续技术的平方差为888的等式

    五、对于数表

    1、先看行的规律,然后,以列为单位用数列找规律方法找规律

    2、看看有没有一个数是上面两数或下面两数的和或差