设a(x1,x2,x3,...,xn),B(y1,y1,...,yn),c(z1,z2,...,zn)
则(a+b)c=(x1+y1,x2+y2,...,xn+yn)*(z1,z2,...,zn)=(x1z1+y1z1,x2z2+y2z2,...,xnzn+ynzn)=ac+bc
(λa)*b=(λx1y1,λx2y2,...,λxnyn)=λ(ab)=a(λb)
当λ为向量时,不成立
λ(a*b)沿λ方向
(λa)*b沿b方向
a*(λb)沿a方向
明显不等
有(a+b)*c=a*c+b*c
即有分配律
则易证a^3 -b^3=(a-b)(a^2+ab+b^2)
方向向量即方向与原直线一样的向量
因为向量可平移,你那么讲没大问题,但当斜率不存在或等于0时就不能这么讲了
因为设a为方向向量,b为法向量,当λ≠0时不存在时,λa也是方向向量,λb也是法向量,有无限多个
这种表示只是方便写出方向向量和法向量而已,有了方程便可直接写出这两个向量,不用算