1
令坐标A(x1,y1),B(x2,y2)
则有:
x1^2/9-y1^2/16=1;
x2^2/9-y2^2/16=1;
两式相减得:
(x1+x2)(x1-x2)/9=(y1+y2)(y1-y2)/16;
而由题意有:
斜率(y1-y2)/(x1-x2)=arctan(π/4)=1;
则:(x1+x2)=[(y1+y2)/16]·1=(y1+y2)/16
令x0=(x1+x2)/2; y0=(y1+y2)/2;
则 y0=16x0.
由弦AB过右焦点F(5,0)可知直线AB方程为y=x-5;
则有:y0=x0-5;
与y0=16x0联立解得:x0=-1/3; y0=-16/3.
则AB的中点F的距离=√[(-1/3-5)^2 +(-16/3-0)^2]=80√2/7.
2
(x1,y1)B(x2,y2) y2