xy=xf(z)+yψ(z)两边全微分
xdy+ydx=dxf(z)+xf'(z)dz+dyψ(z)+yψ'(z)dz
整理有
dz={[y-f(z)]/[xf'(z)+yψ'(z)]}dx+{[x-ψ(z)]/[xf'(z)+yψ'(z)]}dy
得到
dz/dx=[y-f(z)]/[xf'(z)+yψ'(z)]
dz/dy=[x-ψ(z)]/[xf'(z)+yψ'(z)]
其中xf'(z)+yψ'(z)≠0
所以:
[x-ψ(z)]·(dz/dx)=[y-f(z)]·(dz/dy)
xy=xf(z)+yψ(z)两边全微分
xdy+ydx=dxf(z)+xf'(z)dz+dyψ(z)+yψ'(z)dz
整理有
dz={[y-f(z)]/[xf'(z)+yψ'(z)]}dx+{[x-ψ(z)]/[xf'(z)+yψ'(z)]}dy
得到
dz/dx=[y-f(z)]/[xf'(z)+yψ'(z)]
dz/dy=[x-ψ(z)]/[xf'(z)+yψ'(z)]
其中xf'(z)+yψ'(z)≠0
所以:
[x-ψ(z)]·(dz/dx)=[y-f(z)]·(dz/dy)