已知集合P={-5,-4,-3,-2,-1,0,1,2,3,4,5},它的所有非空子集记作Pk(k为整数,1≤k≤204

2个回答

  • 这是由规律进而求出通项的解法.

    举例说明,当集合P里只有-5和-4这两项时,P={-5,-4},它的所有子集共有2^2=4个,非空子集一共有3个,分别是{-5},{-4},{-5,-4},那么p1+p2+p3=(-5)+(-4)+(-5)*(-4)=11=[1+(-4)]*[1+(-5)]-1

    因为通过观察发现(1+a)(1+b)的展开式里一共四项,分别是a和b的本身,ab,和1,而a、b、ab这三项正是我们所需要的.以此类推当集合P={-5,-4,-3,-2,-1,0,1,2,3,4,5}时,一共11个元素,分别设为a1,a2.a11,那么集合P一共有2048个子集,2047个非空子集.

    再由上面的观察发现 (1+a1)(1+a2)...(1+a11)展开正好有2048项,除了常数项1是我们不需要的外其他都恰好是我们所需要的,因此只需算出(1+a1)(1+a2)...(1+a11)的值再减去1即可.

    故p1+p2+...p2047=(1+a1)(1+a2)...(1+a11)-1=-1