(1)按规律填空
1
1×2 +
1
2×3 +
1
3×4 +
1
4×5 +
1
5×6 =1-
1
2 +
1
2 -
1
3 +
1
3 -
1
4 +
1
4 -
1
5 +
1
5 -
1
6 =1-
1
6 =
5
6 ,
1
1×2 +
1
2×3 +
1
3×4 +
1
4×5 +…+
1
99×100 =1-
1
100 =
99
100 ;
(2)
1
n(n+1) +
1
(n+1)(n+2) +
1
(n+2)(n+3) +
1
(n+3)(n+4) +…+
1
(n+99)(n+100)
=
1
n -
1
n+1 +
1
n+1 -
1
n+2 +…+
1
n+99 -
1
n+100
=
1
n -
1
n+100 .