设f(k)是满足不等式log 2 x+log 2 (3•2 k-1 -x)≥2k-1(k∈N*)的正整数x的个数.

1个回答

  • (1)∵log 2x+log 2(3•2 k-1-x)≥2k-1

    x>0

    3•2 k-1 -x>0

    x( 3•2 k-1 -x)≥ 2 2k-1 ,

    解得2 k-1≤x≤2 k,∴f(k)=2 k-2 k-1+1=2 k-1+1

    (2)∵S n=f(1)+f(2)+…+f(n)=1+2+2 2+…+2 n-1+n=2 n+n-1

    ∴S n-P n=2 n-n 2

    n=1时,S 1-P 1=2-1=1>0;n=2时,S 2-P 2=4-4=0

    n=3时,S 3-P 3=8-9=-1<0;n=4时,S 4-P 4=16-16=0

    n=5时,S 5-P 5=32-25=7>0;n=6时,S 6-P 6=64-36=28>0

    猜想,当n≥5时,S n-P n>0

    ①当n=5时,由上可知S n-P n>0

    ②假设n=k(k≥5)时,S k-P k>0

    当n=k+1时,S k+1-P k+1=2 k+1-(k+1) 2=2•2 k-k 2-2k-12(2 k-k 2)+k 2-2k-1

    =2(S k-P k)+k 2-2k-1>k 2-2k-1=k(k-2)-1≥5(5-2)-1=14>0

    ∴当n=k+1时,S k+1-P k+1>0成立

    由①、②可知,对n≥5,n∈N*,S n-P n>0成立即S n>P n成立

    由上分析可知,当n=1或n≥5时,S n>P n

    当n=2或n=4时,S n=P n

    当n=3时,S n<P n