如图,AB为⊙O的直径,BC切⊙O于点B,AC交⊙O于点P,CE=BE,点E在BC上.求证:PE是⊙O的切线.

2个回答

  • 解题思路:连接BP,OP,由题设条件导出∠BPC=180°-∠PBC-∠C=180°-∠BAC-∠C=∠ABC=90°,故PE=BE=CE,再由OB=OP,能够证明PE是⊙O的切线.

    连接BP,OP,∵AB为⊙O的直径,BC切⊙O于点B,AC交⊙O于点P,CE=BE,点E在BC上,∴∠APB=90°,∠ABC=90°,∠BAC=∠PBC,∴∠BPC=180°-∠PBC-∠C=180°-∠BAC-∠C=∠ABC=90°,∴PE=BE=CE,∵OB=OP,∴∠OPE=90°...

    点评:

    本题考点: 与圆有关的比例线段.

    考点点评: 本题考查了平行线的性质、等腰三角形的性质、三角形的中位线定理、切线的判定、圆周角定理等知识点的运用,能综合运用这些性质进行推理是解此题的关键,注意证切线的方法:知道过圆上一点,连接圆心和该点证垂直.