lim(x->0) [(1+x)^(1/n)-1]/(x/n)
=lim(x->0) [1/n*(1+x)^(1/n -1)]/(1/n)
=lim(x->0) (1+x)^(1/n -1)
=1
∴ (1+x)^(1/n)-1 ~ x/n
即: (1+x)^a -1 ~ ax (a=1/n , x->0)
lim(x->0) [(1+x)^(1/n)-1]/(x/n)
=lim(x->0) [1/n*(1+x)^(1/n -1)]/(1/n)
=lim(x->0) (1+x)^(1/n -1)
=1
∴ (1+x)^(1/n)-1 ~ x/n
即: (1+x)^a -1 ~ ax (a=1/n , x->0)