(1^2+...+n^2=n(n+1)(2n+1)/6 这是基本结论)
由(7n+1)/6=[a(n+1)+...+a(2n)]/S(n)
S(n)=[6/(7n+1)][a(n+1)+...+a(2n)]
S(n)=[6/(7n+1)]{[1^2+...+(2n)^2]-(1^2+...+n^2)}
S(n)=[6/(7n+1)][(2n)(2n+1)(4n+1)/6-n(n+1)(2n+1)/6]
S(n)=[1/(7n+1)](7n^2+n)(2n+1)
S(n)=2n^2+n
∴b(n)=S(n)-S(n-1)=4n-1(n>1)
b(1)=S(1)=3满足4n-1
∴b(n)=S(n)-S(n-1)=4n-1
(2)证明:
2^[-b(n)]/2^[-b(n-1)]
=2^[b(n-1)-b(n)]
=2^(-4)
=1/16
∴数列{2^[-b(n)]}是等比数列