1.这题思路是这样的.要证明{an-3}是等比要得到【a(n+1)-3】/【an-3】等于一个常数咯又因为a(n+1),an,3成等差数列所以a(n+1)+3=2an左右两边同时减去6得a(n+1)-3=2an-6即a(n+1)-3=2(an-3)即【a(n+1)-3】/【an-3...
已知数列{an}满足a1=4且a(n+1),an,3成等差数列,其中.
3个回答
相关问题
-
已知数列{an}满足a1=4,且an+1,an,3成等差数列,(其中n∈N*).
-
已知数列{an}满足a1=4/3,且an+1=〔4(n+1)an〕/(3an+n) (n∈N*)
-
已知数列an满足an=4a(n-1)+3n-4,且a1=3,证明数列an+n为等比数列
-
设数列{an}满足an+1=3an+2n(n∈N*)且a1,a2+5,a3 成等差数列.
-
已知数列{an}满足a1=4,an+1=an+p.3^n+1(n属于N+,P为常数),a1,a2+6,a3成等差数列.
-
已知数列{an}是等比数列,其中a3=1,且a4,a5+1,a6成等差数列,数列{an/bn}的前n项和Sn=(n-1)
-
已知数列{an}满足a1=2,an=3a(n-1)+2,(n>=2),求证数列{a(n)+1}为等差数列
-
已知等差数列{an}满足a(n+1)=an+3n+2,且a1=2,求an.
-
已知数列[an]满足An+1=1+an /3-an ,且a1=1/3,求证数列[1/(an -1)]是等差数列,并求an
-
已知数列{an}满足an+1=(2+n)an/n +1 证明an/n是等差数列 a1=1