1.已知函数f(x)、g(x)在R上有定义,且f(x-y)=f(x)g(y)-g(x)f(y),若f⑴=f⑵≠0,则g⑴+g(-1)= ________.
令x=y=0
∴f(0)=f(0)g(0)-g(0)f(0)
∴f(0)=0
令x=1,y=0
∴f(1)=f(1-0)=f(1)g(0)-g(1)f(0)=f(1)g(0)
∴g(0)=1
令x=0,y=1
∴f(-1)=f(0-1)=f(0)g(1)-g(0)f(1)=-g(0)f(1)=-f(1)
令x=-1,y=1
∴f(-2)=f(-1-1)=f(-1)g(1)-g(-1)f(1)=-f(1)g(1)-g(-1)f(1)=-f(1)[g(1)+g(-1)]
又∵f(-2)=f(1)≠0
∴g(1)+g(-1)=-1
2.对于α、β∈[0,2π),记x=sinα+sinβ,y=cosα+cosβ,求直角坐标系上点(x,y)的轨迹.
x=sinα+sinβ,
y=cosα+cosβ
x-sinα=sinβ,
y-cosα=cosβ.
平方相加:
(x-sinα)^2+(y-cosα)^2=1
而当α变化时点(sinα,cosα)所表示的点的轨迹是已原点为圆心,以1为半径的圆.
所以(x,y)表示到该圆的距离为1的点的集合.
所以(x,y)的轨迹是以原点为圆心,以2为半径的圆及其内部所有的平面区域.