用O表示I:
O是△ABC内心,则:aOA+bOB+cOC=0,而:OB=OA+AB,OC=OA+AC
即:aOA+b(OA+AB)+c(OA+AC)=(a+b+c)OA+bAB+cAC=0,即:
AO=bAB/(a+b+c)+cAC/(a+b+c)=(bm+cn)/(a+b+c)
用O表示I:
O是△ABC内心,则:aOA+bOB+cOC=0,而:OB=OA+AB,OC=OA+AC
即:aOA+b(OA+AB)+c(OA+AC)=(a+b+c)OA+bAB+cAC=0,即:
AO=bAB/(a+b+c)+cAC/(a+b+c)=(bm+cn)/(a+b+c)