解题思路:(1)由AD∥BC,DC∥AB,可得四边形ABCD是平行四边形.然后分别过点A、D作AE⊥BC于E,DF⊥AB于F.又由两张矩形纸片的宽度相等,即可得AE=DF,又由面积问题,可得BC=AB,即可得四边形ABCD为菱形;
(2)由题意可判断,当∠DAB=90°时,菱形ABCD为正方形,周长最小值为8.当AC为矩形纸片的对角线时,周长最大值为17.
(1)证明:如图,∵AD∥BC,DC∥AB,
∴四边形ABCD是平行四边形.
分别过点A、D作AE⊥BC于E,DF⊥AB于F.
∵两张矩形纸片的宽度相等,
∴AE=DF,
又∵AE•BC=DF•AB=S▱ABCD,
∴BC=AB,
∴▱ABCD是菱形;
(2)存在最小值和最大值.(7分)
①当∠DAB=90°时,菱形ABCD为正方形,周长最小值为8;(8分)
②当AC为矩形纸片的对角线时,设AB=x.如图,
在Rt△BCG中,BC2=CG2+BG2,
即x2=(8-x)2+22,x=[17/4].
∴周长最大值为[17/4]×4=17.(9分)
点评:
本题考点: 菱形的判定;全等三角形的判定与性质.
考点点评: 本题考查了菱形的判定,及运用矩形,菱形的性质进行综合运算的能力.