两题都是分部积分法
1)原式=∫1/x*dx+∫ln(1-x)/x^2*dx
=lnx-ln(1-x)/x+∫1/x(x-1)*dx
=lnx-ln(1-x)/x+ln[(x-1)/x]+C
2)原式=-arctanx+∫1/x(x^2+1)*dx
=-arctanx+1/2*ln[x^2/(x^2+1)]+C
两题都是分部积分法
1)原式=∫1/x*dx+∫ln(1-x)/x^2*dx
=lnx-ln(1-x)/x+∫1/x(x-1)*dx
=lnx-ln(1-x)/x+ln[(x-1)/x]+C
2)原式=-arctanx+∫1/x(x^2+1)*dx
=-arctanx+1/2*ln[x^2/(x^2+1)]+C