证:我们以横向的椭圆x²/a²+y²/b²=1(a>b>0)为例,A1,A2取长轴顶点为例
点M(m,0)是长轴上除顶点,原点外的任意一点
(2)PQ斜率存在时,设PQ:y=k(x-m),P(x1,y1),Q(x2,y2)
设N(s,t),A1(-a,0),A2(a,0)
K(A1N)=t/(s+a),K(A2N)=t/(s-a)
则:K(A1N)=[(s-a)/(s+a)]*K(A2N)
又:K(A1N)=K(A1P)=y1/(x1+a),K(A2N)=K(A2Q)=y2/(x2-a)
则:y1/(x1+a)=[(s-a)/(s+a)]*y2/(x2-a),为了便于处理,令(s-a)/(s+a)=p
两边平方得:y1²/(x1+a)²=p²y2²/(x2-a)² ①
P,Q在椭圆上,易得:y1²=(b²/a²)(a²-x1²),y2²=(b²/a²)(a²-x2²) 代入①式
(b²/a²)(a²-x1²)/(x1+a)²=p²(b²/a²)*(a²-x2²)/(x2-a)²
(a²-x1²)/(x1+a)²=p²(a²-x2²)/(x2-a)² 分子都用平方差
(a-x1)(a+x1)/(x1+a)²=p²(a-x2)(a+x2)/(x2-a)²
(a-x1)/(x1+a)=p²(a+x2)/(a-x2)
(a-x1)(a-x2)=p²(a+x1)(a+x2)
a²-a(x1+x2)+x1x2=p²a²+p²a(x1+x2)+p²x1x2
(p²-1)x1x2+(p²+1)a(x1+x2)+a²(p²-1)=0 ②
P,Q是直线y=k(x-m)与椭圆的交点,把y=k(x-m)代入椭圆得:
x²/a²+k²(x-m)²/b²=1
(a²k²+b²)x²-2ma²k²x+a²m²k²-a²b²=0
x1+x2=2ma²k²/(a²k²+b²),x1x2=(a²m²k²-a²b²)/(a²k²+b²) 代入②式得:
(p²-1)(a²m²k²-a²b²)/(a²k²+b²)+2mk²(p²+1)a³/(a²k²+b²)+a²(p²-1)=0
(p²-1)(a²m²k²-a²b²)+2mk²(p²+1)a³+a²(p²-1)(a²k²+b²)=0
约去a²得:(p²-1)(m²k²-b²)+2mak²(p²+1)+(p²-1)(a²k²+b²)=0
p²m²k²-p²b²-m²k²+b²+2amk²p²+2amk²+p²a²k²+p²b²-a²k²-b²=0
p²m²k²-m²k²+2amk²p²+2amk²+p²a²k²-a²k²=0
约去k²得:p²m²-m²+2amp²+2am+p²a²-a²=0
p²m²+2amp²+p²a²-(a²-2am+m²)=0
p²(m²+2am+a²)-(a-m)²=0
p²(a+m)²=(a-m)²
p²=(a-m)²/(a+m)² -a0
所以,p=(a-m)/(a+m)
即:(s-a)/(s+a)=(a-m)/(a+m)
(s-a)(a+m)=(s+a)(a-m)
s(a+m)-a(a+m)=s(a-m)+a(a-m)
s(a+m-a+m)=a(a-m+a+m)
2ms=2a²
s=a²/m
即N点的横坐标s满足:s=a²/m
所以,直线A1P、A2Q(A1 ,A2为对称轴上的两顶点)的交点N在直线x=a²/m上
经检验,直线PQ斜率不存在时,该结论仍然成立.
同理可证当A1,A2为短轴顶点时,该结论也是成立的.
证毕.