1、首先,令x1=x2=0,得到f(0)=f(0)^2;因为f(0)不为零,因此f(0)=1;
,由连续的极限定义,即lim(△x→0)△y=0证明:
设x为R上任意一点,在x处有增量△x;于是
lim(△x→0)△y=lim(△x→0)[f(x+△x)-f(x)]
=lim(△x→0)[f(x)f(△x)-f(x)]=lim(△x→0)[f(x)(f(△x)-1)]=0
即lim(△x→0)△y=0,所以f在x处连续,又因为x的任意性,f处处连续.
2很明显xn>0;又Xn+1=1/2(Xn + a/Xn)>=1/2*2√a=√a;
即Xn>=√a;
于是Xn+1/Xn=1/2(1+a/Xn^2)=√a)
即Xn+1