(n→∞)lim(√(n+1)/n+1)^n
1个回答
【√(n+1)/(n+1)】^n=(n+1)^(-n/2)
n→∞时,极限值为0.
相关问题
求1.lim(3n-(3n^2+2n)/(n-1)) 2.lim(8+1/(n+1)) 3.lim根号n(根号(n+1)
定义lim(1+1/n)^n=e,计算lim(1+1/n)^n+5
lim n→∞ n/√(2n+1)(n+1)=
以知lim(n→∞)np^(1/n)-n=lnp,求lim(n→∞){[a^(1/n)+b^(1/n+c^(1/n)]/
lim n(n^(1/n)-1)/lnn
lim(1/n2+2/n2+3/n2+……n/n2)为什么不等于lim1/n2 +lim2/n2 +lim3/n2……+
求极限lim(n->∞){n*[n^(1/n)-1]}/ln(n)
求极限lim [1/(n+1)+1/(n+2)+...+1/(n+n)] (n→∞)
lim n--∞ (1+2/n)^n=?
lim n(a^1/n-b^1/n)=?n→∞过程..