求解不定积分:∫(x⁵)/(Cx+D)dx,C,D 为常数.
当c≠0时:
∫{[x⁵/(cx+d)]dx=∫[(1/c)x⁴-(d/c²)x³+(d²/c³)x²-(d³/c⁴)x+(d⁴/c⁵)]-d⁵/[c⁴(cx+d)]}dx
=(1/5c)x⁵-(d/4c²)x⁴+(d²/3c³)x³-(d³/2c⁴)x²+(d⁴/c⁵)x-(d⁵/c⁵)ln∣cx+d∣+C
当c=0时∫(x⁵/d)dx=x⁶/(6d)+C.
求解不定积分:∫(x⁵)/(Cx+D)dx,C,D 为常数.
当c≠0时:
∫{[x⁵/(cx+d)]dx=∫[(1/c)x⁴-(d/c²)x³+(d²/c³)x²-(d³/c⁴)x+(d⁴/c⁵)]-d⁵/[c⁴(cx+d)]}dx
=(1/5c)x⁵-(d/4c²)x⁴+(d²/3c³)x³-(d³/2c⁴)x²+(d⁴/c⁵)x-(d⁵/c⁵)ln∣cx+d∣+C
当c=0时∫(x⁵/d)dx=x⁶/(6d)+C.