(1)(7sinα-3cosα)/(4sinα+5cosα)
=[7(sinα/cosα)-3]/[4(sinα/cosα)+5]
=(7tanα-3)/(4tanα+5)
=(-21-3)/(-12+5)
=24/7.
(2)2sinαcosα-3cos²α
=(2sinαcosα-3cos²α)/(sin²α+cos²α)
(上式分子分母同时除以cos²α得)
=(2tanα-3)/(tan²α+1)
=(-6-3)/(9+1)
=-9/10.
(1)(7sinα-3cosα)/(4sinα+5cosα)
=[7(sinα/cosα)-3]/[4(sinα/cosα)+5]
=(7tanα-3)/(4tanα+5)
=(-21-3)/(-12+5)
=24/7.
(2)2sinαcosα-3cos²α
=(2sinαcosα-3cos²α)/(sin²α+cos²α)
(上式分子分母同时除以cos²α得)
=(2tanα-3)/(tan²α+1)
=(-6-3)/(9+1)
=-9/10.