1.
an+1-an=3*2^(2n-1)
an-an-1=3*2^(2n-3)
an-1-an-2=3*2^(2n-5)
.
a2-a1=3*2
左右分别相加得a(n+1)-a1=3*(2^1+2^3+2^5+2^7+.+2^(2n-1))
2^1+2^3+2^5+2^7+.+2^(2n-1)是一个等比数列求和,公比4首项2
令Tn=2^1+2^3+2^5+2^7+.+2^(2n-1)
=2×(1-4^n)/(1-4)
=2*(4^n-1)/3
则上面那个式子就可求得了:
a(n+1)-a1=3*(2*(4^n-1)/3)
=2*(4^n-1)
a1=2
得a(n+1)=2×4^n
=2^(2n+1)
即an=2^(2n-1)
2.
bn=nan
=n*2^(2n-1)
sn=1*2^1+2*2^3+3*2^5+4*2^7+5*2^9+.+n*2^(2n-1) (1)
2^2*sn= 1*2^3+2*2^5+3*2^7+4*2^9+.+(n-1)*2^(2n-1) +n*2^(2n+1) (2)
(1)-(2)=-3sn=2^1+2^3+2^5+2^7+2^9+.+2^(2n-1)-n*2^(2n+1)
=2*(1-4^n)/(1-4)-n*2^(2n+1)
=2(4^n-1)/3-n*2^(2n+1)
可得sn=n*2^(2n+1)/3-2(4^n-1)/9
希望论文帮到您,欢迎追问