设数列{an}满足a1=2,an+1-an=3·2^(2n-1) 1.求数列an的通项式 2.令=nan,求数列bn的前

1个回答

  • 1.

    an+1-an=3*2^(2n-1)

    an-an-1=3*2^(2n-3)

    an-1-an-2=3*2^(2n-5)

    .

    a2-a1=3*2

    左右分别相加得a(n+1)-a1=3*(2^1+2^3+2^5+2^7+.+2^(2n-1))

    2^1+2^3+2^5+2^7+.+2^(2n-1)是一个等比数列求和,公比4首项2

    令Tn=2^1+2^3+2^5+2^7+.+2^(2n-1)

    =2×(1-4^n)/(1-4)

    =2*(4^n-1)/3

    则上面那个式子就可求得了:

    a(n+1)-a1=3*(2*(4^n-1)/3)

    =2*(4^n-1)

    a1=2

    得a(n+1)=2×4^n

    =2^(2n+1)

    即an=2^(2n-1)

    2.

    bn=nan

    =n*2^(2n-1)

    sn=1*2^1+2*2^3+3*2^5+4*2^7+5*2^9+.+n*2^(2n-1) (1)

    2^2*sn= 1*2^3+2*2^5+3*2^7+4*2^9+.+(n-1)*2^(2n-1) +n*2^(2n+1) (2)

    (1)-(2)=-3sn=2^1+2^3+2^5+2^7+2^9+.+2^(2n-1)-n*2^(2n+1)

    =2*(1-4^n)/(1-4)-n*2^(2n+1)

    =2(4^n-1)/3-n*2^(2n+1)

    可得sn=n*2^(2n+1)/3-2(4^n-1)/9

    希望论文帮到您,欢迎追问