若函数y=f(x)是偶函数,其定义域为{x|x≠0},且函数f(x)在(0,+∞)上是减函数,f(2)=0,则函数f(x

4个回答

  • 解题思路:根据函数的单调性和函数零点之间的关系即可得到结论.

    ∵函数的定义域为{x|x≠0},且函数f(x)在(0,+∞)上是减函数,f(2)=0,

    ∴在(0,+∞)上,函数只有一个唯一的零点2.

    ∵函数y=f(x)是偶函数,

    ∴根据偶函数的对称性可知在(-∞,0)上,函数f(x)存在唯一的一个零点-2,

    故函数f(x)的零点有2个,

    故选:B

    点评:

    本题考点: 函数的零点.

    考点点评: 本题主要考查函数零点个数的判断,根据函数单调性和奇偶性之间的关系是解决本题的关键.