AB为半圆O的直径,AB=2,P为AB延长线上一点,且OP=2

1个回答

  • 设∠QOP=a

    则:QO=1,

    PQ^2=OQ^2+OP^2-2OP*OQcosa=1+4-2*2cosa=5-4cosa

    SOPRQ=S△OPQ+S△PQR

    =1/2*OP*OQsina+1/2*PQ*√3PQ/2

    =sina+√3PQ^2/4

    =sina+√3(5-4cosa)/4

    =sina-√3cosa+5√3/4

    =2sin(a-π/3)+5√3/4

    所以,a-π/3=π/2,即:a=5π/6时

    四边形OPRQ的面积有最大值=2+5√3/4

    这时,∠QOP=a=5π/6=150°