设∠QOP=a
则:QO=1,
PQ^2=OQ^2+OP^2-2OP*OQcosa=1+4-2*2cosa=5-4cosa
SOPRQ=S△OPQ+S△PQR
=1/2*OP*OQsina+1/2*PQ*√3PQ/2
=sina+√3PQ^2/4
=sina+√3(5-4cosa)/4
=sina-√3cosa+5√3/4
=2sin(a-π/3)+5√3/4
所以,a-π/3=π/2,即:a=5π/6时
四边形OPRQ的面积有最大值=2+5√3/4
这时,∠QOP=a=5π/6=150°
设∠QOP=a
则:QO=1,
PQ^2=OQ^2+OP^2-2OP*OQcosa=1+4-2*2cosa=5-4cosa
SOPRQ=S△OPQ+S△PQR
=1/2*OP*OQsina+1/2*PQ*√3PQ/2
=sina+√3PQ^2/4
=sina+√3(5-4cosa)/4
=sina-√3cosa+5√3/4
=2sin(a-π/3)+5√3/4
所以,a-π/3=π/2,即:a=5π/6时
四边形OPRQ的面积有最大值=2+5√3/4
这时,∠QOP=a=5π/6=150°