(1+2sinAcosA)/[(cosA)^2-(sinA)^2]
=[(sinA)^2+(cosA)^2+2sinAcosA]/[(cosA)^2-(sinA)^2]
=(sinA+cosA)^2/[(cosA+sinA)(cosA-sinA)]
=(cosA+sinA)/(cosA-sinA)
(1+tanA)/(1-tanA)
=(1+sinA/cosA)/(1-sinA/cosA)
=(cosA+sinA)/(cosA-sinA)
所以(1+2sinAcosA)/[(cosA)^2-(sinA)^2]=(1+tanA)/(1-tanA)