设F(x)=∫(0,x)e^(-t)costdt,则F‘(0)=
1个回答
F(x)=∫(0,x)e^(-t)costdt,
所以F '(x)=e^(-x)cosx
于是F '(0)=e^0 * cos0
=1
相关问题
设函数∫0→x^2 costdt,则f'(π/2)
设f(x)=e^x-1+o(x),且f(0)=0,则f '(0)=____
设函数f(x)在x0可导,则limt→0f(x0+t) −f(x0−3t)t=( )
设∫(下限0-上限x)e^t^2 dt 则f'(x)=?
设f(x)=∫(0→x) sint/(∏-t)dt 则∫(0→∏) f(x)dx=
设f(x)=e^2x,则f^(2015)(0)=
设连续函数f(x)满足f(x)+2∫[0→x]f(t)d t=x^2,则f(x)=__________.
设f'(0)=1,则x趋向0时lim(f(3t)-f(-t))/2t =
设F(X)=∫(2x,0)t^2sin(t^2)dt,则F'(X)=?
设函数f x连续 ∫[0,x^2-1] f(t) dt=2x(x>0)则f(3)=