已知数列{a n }中, a 1 =1, a n+1 a n-1 = a n a n-1 + a n 2 (n∈ N +

1个回答

  • (I)证明:∵

    a n+1

    a n =kn+1 ,

    a 2

    a 1 = a 2 =k+1 ,

    又∵ a 1 =1, a n+1 a n-1 = a n a n-1 + a n 2 (n∈ N + ,n≥2)

    则a 3a 1=a 2a 1+ a 2 2 ,即

    a 3

    a 2 = a 2 +1 ,又

    a 3

    a 2 =2k+1 ,∴a 2=2k.

    ∴k+1=2k,解得k=1.

    (2)∵

    a n+1

    a n =n+1 ,∴ a n =

    a n

    a n-1 •

    a n-1

    a n-2 …

    a 2

    a 1 • a 1 =n•(n-1)…2•1=n!

    ∵ g(x)=

    a n x n-1

    (n-1)! =nx n-1

    ∴当x=1时, f(x)=f(1)=1+2+3+…+n=

    n(n+1)

    2 ,

    当x≠1时,f(x)=1+2x+3x 2+…+nx n-1

    得xf(x)=x+2x 2+3x 3+…+(n-1)x n-1+nx n
    两式相减得(1-x)f(x)=1+x+x 2+…+x n-1-nx n=

    1- x n

    1-x -n x n

    ∴f(x)=

    1- x n

    (1-x ) 2 -

    n x n

    1-x

    综上所述: f(x)=

    n(n+1)

    2 ,x=1

    1- x n

    (1-x) 2 -

    n x n

    1-x ,x≠1 .

    (3)利用(2)中f(x)的表达式,取x=2,

    则 f(2)=

    1- 2 n

    (1-2 ) 2 -

    n• 2 n

    1-2 =(n-1)•2 n+1,

    3

    n g(3)= 3 n ,下面利用数学归纳法证明:不等式 f(2)<

    3

    n g(3) 对n∈N +恒成立.

    易验证当n=1,2,3时不等式恒成立;

    假设n=k(k≥3),不等式成立,即3 k>(k-1)2 k+1

    两边乘以3得:3 k+1>3(k-1)2 k+3=k•2 k+1+1+3(k-1)2 k-k2 k+1+2

    又因为3(k-1)2 k-k•2 k+1+2=2 k(3k-3-2k)+2=(k-3)2 k+2>0

    所以3 k+1>k•2 k+1+1+3(k-1)2 k-k2 k+1+2>k•2 k+1+1

    即n=k+1时不等式成立.

    故不等式恒成立.