(I)证明:∵
a n+1
a n =kn+1 ,
∴
a 2
a 1 = a 2 =k+1 ,
又∵ a 1 =1, a n+1 a n-1 = a n a n-1 + a n 2 (n∈ N + ,n≥2)
则a 3a 1=a 2a 1+ a 2 2 ,即
a 3
a 2 = a 2 +1 ,又
a 3
a 2 =2k+1 ,∴a 2=2k.
∴k+1=2k,解得k=1.
(2)∵
a n+1
a n =n+1 ,∴ a n =
a n
a n-1 •
a n-1
a n-2 …
a 2
a 1 • a 1 =n•(n-1)…2•1=n!
∵ g(x)=
a n x n-1
(n-1)! =nx n-1
∴当x=1时, f(x)=f(1)=1+2+3+…+n=
n(n+1)
2 ,
当x≠1时,f(x)=1+2x+3x 2+…+nx n-1.
得xf(x)=x+2x 2+3x 3+…+(n-1)x n-1+nx n
两式相减得(1-x)f(x)=1+x+x 2+…+x n-1-nx n=
1- x n
1-x -n x n
∴f(x)=
1- x n
(1-x ) 2 -
n x n
1-x
综上所述: f(x)=
n(n+1)
2 ,x=1
1- x n
(1-x) 2 -
n x n
1-x ,x≠1 .
(3)利用(2)中f(x)的表达式,取x=2,
则 f(2)=
1- 2 n
(1-2 ) 2 -
n• 2 n
1-2 =(n-1)•2 n+1,
又
3
n g(3)= 3 n ,下面利用数学归纳法证明:不等式 f(2)<
3
n g(3) 对n∈N +恒成立.
易验证当n=1,2,3时不等式恒成立;
假设n=k(k≥3),不等式成立,即3 k>(k-1)2 k+1
两边乘以3得:3 k+1>3(k-1)2 k+3=k•2 k+1+1+3(k-1)2 k-k2 k+1+2
又因为3(k-1)2 k-k•2 k+1+2=2 k(3k-3-2k)+2=(k-3)2 k+2>0
所以3 k+1>k•2 k+1+1+3(k-1)2 k-k2 k+1+2>k•2 k+1+1
即n=k+1时不等式成立.
故不等式恒成立.