y' = -2y/x - x³
dy/dx = -2y/x - x³
xdy = -2ydx - x^4dx
(2y+x^4)dx + xdy = 0
(2ydx + xdy) + x^4dx = 0
积分因子为:x^(2-1) * y^(1-1) = x
将x乘以整个微分方程:
x(2ydx + xdy) + x^5dx = 0
d(x²y) = -x^5 dx
x²y = -x^6 / 6 + c
所以y = c/x² - (1/6)x^4,c为常数
y' = -2y/x - x³
dy/dx = -2y/x - x³
xdy = -2ydx - x^4dx
(2y+x^4)dx + xdy = 0
(2ydx + xdy) + x^4dx = 0
积分因子为:x^(2-1) * y^(1-1) = x
将x乘以整个微分方程:
x(2ydx + xdy) + x^5dx = 0
d(x²y) = -x^5 dx
x²y = -x^6 / 6 + c
所以y = c/x² - (1/6)x^4,c为常数