已知函数f(x)=a•b x 的图象过点A(0, 1 16 ),B(2, 1 4 ).

1个回答

  • (I)∵函数f(x)=a•b x的图象过点

    A(0,

    1

    16 ),B(2,

    1

    4 )

    a• b 0 =

    1

    16

    a• b 2 =

    1

    4 解得:a=

    1

    16 ,b=2,∴f(x)=2 x-4

    (II)a n=log 2 f(n)=

    log 2 n-4 2 =n-4

    ∴{a n}是首项为-3,公差为1的等差数列

    ∴S n=-3n+

    1

    2 n(n-1)=

    1

    2 n(n-7);

    (III)b n=a n(

    1

    2 ) n =(n-4) (

    1

    2 ) n

    T n=-3×

    1

    2 +(-2)× (

    1

    2 ) 2 +…+(n-4)× (

    1

    2 ) n ①

    1

    2 T n =-3× (

    1

    2 ) 2 +(-2)× (

    1

    2 ) 3 +…+(n-4)× (

    1

    2 ) n-1 ②

    ①-②,得:

    1

    2 T n=-3×

    1

    2 + (

    1

    2 ) 2 + (

    1

    2 ) 3 +…+ (

    1

    2 ) n -(n-4)× (

    1

    2 ) n-1

    ∴T n=-2-(n-2) (

    1

    2 ) n .