f(x)=cos²x+sinxcosx
=(cos2x+1)/2+sinxcosx
=1/2cos2x+1/2+1/2sin2x
=√2/2sin(2x+π/4)+1/2
f(3π/8)=√2/2*sinπ+1/2=1/2
先求增区间
令2kπ-π/2
f(x)=cos²x+sinxcosx
=(cos2x+1)/2+sinxcosx
=1/2cos2x+1/2+1/2sin2x
=√2/2sin(2x+π/4)+1/2
f(3π/8)=√2/2*sinπ+1/2=1/2
先求增区间
令2kπ-π/2