解题思想:对于分式求值,先通分,然后尽可能将分子分母向已知条件转化,
即全部化成有关x+y与xy,最后将已知值代入求解.
(y+1)/(x+1)+(x+1)/(y+1)
=[(y+1)²+(x+1)²]/[(x+1)(y+1)]
=(x²+y²+2x+2y+2)/(xy+x+y+1)
=[(x+y)²-2xy+2(x+y)+2]/(xy+x+y+1)
=(4+20-4+2)/(-10-2+1)
=22/(-11)
=-2
解题思想:对于分式求值,先通分,然后尽可能将分子分母向已知条件转化,
即全部化成有关x+y与xy,最后将已知值代入求解.
(y+1)/(x+1)+(x+1)/(y+1)
=[(y+1)²+(x+1)²]/[(x+1)(y+1)]
=(x²+y²+2x+2y+2)/(xy+x+y+1)
=[(x+y)²-2xy+2(x+y)+2]/(xy+x+y+1)
=(4+20-4+2)/(-10-2+1)
=22/(-11)
=-2