假设x^/a^-y^/b^=1, Q(X,Y) ,F2(c,0),
过Q做x轴垂线,垂足为A, PQ:QF2=2:1=OA:AF, OA+AF=C,
所以:OA=2C/3=X, AF2=C/3,
tanα=(√21)/2=Y/AF===>Y=(√21)C/6,即:Q(2C/3, √21 C/6)
代入方程, 4c^/9a^-7c^/12b^=1, c^=a^+b^代入,化简:
16b^/a^-21a^/b6-41=0,
令b^/a^=k,
16k^-41k-21=0,
(k-3)(16k+7)=0,
k=3,(负舍)
即:b^/a^=3, 又ab=√3,解方程组,得
a^=1,b^=3,
所以:x^2-(y^2)/3=1.